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Harmonic twistor formalism and transgression
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Abstract

In this paper we continue our study of the fourth-order transgression on hyperähler manifolds
introduced in the previous paper. We give a local construction for the fourth-order transgression
of the Chern character form of an arbitrary vector bundle supplied with a self-dual connection
on a four-dimensional hyperkähler manifold. The construction is based on the harmonic twistor
formalism. Remarkably, the resulted expression for the fourth-order transgression is given in terms
of the determinant of thē∂-operator defined on fibers of the twistor fibration.
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1. Introduction

In this paper we continue our study of the transgression of characteristic classes of hy-
perholomorphic bundles on hyperkähler manifolds[2]. In the previous paper the global
construction for the fourth-order transgression of the Chern character form on a compact
hyperkähler manifold was proposed. In addition, the explicit expression for the transgres-
sion of the Chern character arising in the application of the local families index theorem
was found. This construction was local over the base of the fibration. It is natural to look
for a local derivation of the transgression of the Chern character forms for an arbitrary
hyperholomorphic bundle. In this paper we give the general local construction for an ar-
bitrary hyperholomorphic bundle on a four-dimensional hyperkähler manifold. Note that
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in d = 4 the condition on a hermitian bundle to be hyperholomorphic is equivalent to the
antiself-duality condition on the corresponding connection. We propose an explicit expres-
sion for the fourth-order transgressionT (E) of the top degree part of the Chern character
form for an arbitrary vector bundleE supplied with a self-dual connection. The construction
is local and thus is applicable to an arbitrary four-dimensional hyperkähler manifoldM.
Locally the Chern character form is exact and we have:

ch[2](E) = volM�2T

for a volume form volM . Remarkably, the explicit expression forT (E) is non-trivial even
for a linear bundleE.

In our derivation we essentially use the harmonic twistor approach, the variant of the
twistor formalism developed in[3,4,8]. In twistor approach[9] one codes the information
about self-dual connections on a vector bundle in terms of holomorphic structures on a
bundle over the twistor fibrationZM → M with a fiber beingS2. Remarkably, the proposed
expression forT (E) is given in terms of the determinant of the∂̄A-operator in the sense
of Quillen [7] acting on sections of the holomorphic bundle restricted to the fibers. This
implies that the results of this paper may be connected with the local families index for the
twistor fibration.

Rather straightforwardly, the construction described in this paper may be generalized
to hyperkähler manifolds of an arbitrary dimension. We are going to discuss the general
construction connecting the approaches of this paper and[2] the future publication.

2. Harmonic twistor formalism

In this section we give a short account of the harmonic formalism closely following the
presentation given in[3,4]. LetM be a four-dimensional manifold. Holonomy group in four
dimensions is a tensor productSp(1) ⊗ Sp(1) andT ∗M naturally splits:

T ∗M = HL ⊗HR,

whereHL,R areSp(1)-bundles overM with the connection formsωα̇

(L,R)β̇
such that

∇hα̇ = hβ̇ωα̇

Lβ̇
, ∇eα = eβωα

Rβ.

In this notationsθ α̇α = hα̇ ⊗ eα is the basis of 1-forms.
Let Z be a total space ofHL \ 0. Let us introduce harmonic variablesu±α̇, u±

α̇ with the
following properties:

u+
α̇ = u+β̇ εα̇β̇ , u+α̇ = u+

β̇
εα̇β̇ , (1)

u−
α̇ = u−β̇ εβ̇α̇, u−α̇ = u−

β̇
εβ̇α̇, (2)

whereεα̇β̇ = −εα̇β̇ = εβ̇α̇.
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They define a frame in the bundleHL. We will consider the spherical bundle defined by
the condition:

u+
α̇ u

+α̇ = 0, u+
α̇ u

−α̇ = 1, (3)

supplied with the reality condition:

u±α̇ = u±
α̇ . (4)

Let M be a hyperkähler manifold. Then one could chose the trivial connection onHL

(ωα̇

Lβ̇
= 0). Let us introduce the bases of vertical formsθ±α̇ and horizontal formsη±α with

respect to projectionZ → M as follows:

θ±α̇ = du±α̇, η±α = u±α̇θ α̇α.

The variablesu±α̇ parameterize complex structures onT ∗
x M compatible with the hyper-

kähler structure. At each point(x, u) ∈ Z the formsη+α(η−α) span the distribution of the
holomorphic (antiholomorphic) forms with respect to the complex structureu onT ∗

x M.
We will be interested in the local properties of the self-dual connections on vector bundles.

Thus we could consider the flat spaceM = R
4 with the standard metricgµν = δµν in

coordinatesxµ. As the sections ofSp(k)×Sp(1)-bundle, the coordinatesxµ may be written
asxαα̇ with the reality conditionxαα̇ = xαα̇, where

xαα̇ = εαβεα̇β̇x
ββ̇ = εβαεβ̇α̇x

ββ̇ , (5)

xαα̇ = εαβεα̇β̇xββ̇ = εβαεβ̇α̇xββ̇ . (6)

For the complex structure defined byu the antiholomorphic coordinates are:

x±α = u±
α̇ x

αα̇, (7)

x±
α = u±α̇xαα̇. (8)

Now the reality condition can be written as follows:x±
α = x∓α. In fact

x±
α = u±α̇xαα̇ = u∓

α̇ x
αα̇ = x∓α.

Using(1), (2), (5) and (6), one gets

x+α = x+
β ε

βα, x+
α = x+βεβα, (9)

x−α = x−
β ε

αβ, x−
α = x−βεαβ. (10)

For the differential operators∂±
α ≡ u±β̇ ∂αβ̇ we have the following simple relation:

∂±
α = ∂

∂x∓α
. (11)

Taking into account the normalization conditions(3), we get the expression for the Laplace
operator:

� ≡ ∂µ∂µ = 2∂±
α ∂∓α. (12)
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In the following we will use the realization ofsl(2) algebra:

[D++;D−−] = D0, (13)

[D0;D±±] = ±2D±±, (14)

by the first order differential operators:

D++ = u+α̇ ∂

∂u−α̇
, (15)

D−− = u−α̇ ∂

∂u+α̇
, (16)

D0 = u+α̇ ∂

∂u+α̇
− u−α̇ ∂

∂u−α̇
, (17)

with the properties:

D++u+α̇ = 0, (18)

D++u−α̇ = u+α̇ . (19)

One could introduce the formal analog of integration of the functions of the harmonic
variables as follows. Letf (q)(u) be a function of the chargeq (D0(f (q)) = qf(q)). Then it
has the following expansion:

f (q)(x; u±) =
∑

f (α̇1,... ,α̇n+q β̇1,... ,β̇n)u+
α̇1
, . . . , u+

α̇n+q
u−
β̇1
, . . . , u−

β̇n
. (20)

The integration may be defined by the conditions:∫
d2u1 = 1, (21)

∫
d2uu+

(i1,... ,in
u−
j1,... ,jm)

= 0, n + m > 0. (22)

Note that the integral of the function with non-zero-charge is zero. Integration rules defined
by (21)have the usual property to be zero for a total derivative:∫

d2uD++f = 0. (23)

Thus defined integration is equivalent to the usual integration over the sphereS2 in terms
of coordinatesu±,α̇ but has a virtue to be defined algebraically.

Consider a hermitian vector bundleE onM with a connection∇. For the holomorphic
structure defined byu the holomorphic and antihiolomorphic parts of the connection are
given by:

∇±
α = u±α̇∇αα̇, A±

α = u±α̇Aαα̇. (24)

The curvature of the connection∇ has the representation:

Fαα̇ββ̇ = εα̇β̇fαβ + Ωαβfα̇β̇ ,

whereε, Ω are antisymmetric,f is symmetric.
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Let the connection∇ on E be self-dual. Thus the self-dual part of the curvaturefα̇β̇ is
zero and we have:

Fαα̇ββ̇ = εα̇β̇fαβ. (25)

From the conditions(3) it follows that the connection is integrable on the holomorphic and
antiholomorphic hyperplanes:

[∇±
α ,∇±

β ] = 0, (26)

[∇+
α ,∇−

β ] = fαβ. (27)

The operators∇±
α̇ which lead to self-dual connection may be characterized by the following

set of equations:

[∇±
α ; ∇±

β ] = 0, (28)

[D±±; ∇±
α ] = 0, (29)

[D0; ∇±
α ] = ±∇±

α . (30)

The main advantage of the representation(28)–(30)is the possibility to use theu-dependent
gauge transformations for finding explicit solutions of the self-duality conditions. This goes
as follows. Locally the firstequation (28)allows to represent the positive part of the harmonic
connection as the pure gauge with zero-charge gauge parameterU :

∇+
α = U−1∂+

α U, (31)

q(∇+
α ) = 1 ⇒ q(U(x, u)) = 0. (32)

After the gauge transformation with parameterU(x, u)−1 we get the set of covariant deriva-
tives:

∇+
α = ∂+

α , (33)

D++ = D++ + V ++ = D++ + UD++U−1, (34)

D0 = D0. (35)

Now the only constraint on the functionV ++ with q = 2 comes from(29):

∂

∂x−α
V ++ = 0. (36)

The solution of this equation obviously is given by an arbitrary function ofX+α, u±α̇ with
the total chargeq = 2. Taking into account the properties of the integral(21) we could
reconstruct the gauge field from the solution of theEq. (36):

Aαα̇ =
∫

d2uu−
α̇ (U

−1∂+
α U). (37)
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As an example consider the following matrix-valued function corresponding to the gauge
groupSp(1) [5,6]:

(V ++)ji = x+j x+
i

ρ2
. (38)

This leads to:

(U)
j
i =

(
1 + x2

ρ2

)−1/2(
δ
j
i + x+j x−

i

ρ2

)
, (39)

A
j
αα̇i = 1

ρ2 + x2

(
1

2
xαα̇δ

j
i + εiαx

j
α̇

)
. (40)

Thus we get the one-instanton solution[1] with the center atx = 0 and the sizeρ.

3. Forth order transgression of the second Chern class

According to the general considerations in[2] it is natural to expect that locally the Chern
character form of a hyperholomorphic bundleE over a hyperkähler manifoldM admits the
forth order transgression:

ch(E) = ddI dJ dK(τ(E)), (41)

wheredI = IdI−1, dJ = JdJ−1, dK = KdK−1 are exterior derivative operators twisted by
the compatible complex structuresI, J,K. For four-dimensional hyperkähler manifold this
relation simplifies:

ch[2](E) = volM�2T (E). (42)

Herech[2] is a degree four component of the Chern character, volM is the volume form on
M and� is the Laplace operator.

In this paper we prove the relation(42) using the harmonic twistor formalism and give
the representation forT in terms of the determinant of the first order differential operator:

Theorem 1. LetEbe a hermitian vector bundle on a hyperkähler four-dimensional manifold
M with a self-dual connection ∇ and the curvature form F = ∇2. The following local
expression for the top degree part of the Chern character form holds:

ch[2](E) = − 1

8π2
Tr(F ∧ F) = volM�2T (E), (43)

T (E) = 1

16π2
log

(
Det(D++ + V ++)

Det(D++)

)
. (44)

The determinant here is essentially the determinant of the operator∂̄ (in holomorphic
parameterization we haveD++ ∼ ∂z̄).
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In our parameterization the formulas(A.5) and (A.6)from theAppendix Atake the form:

δ log Det(D++ + V ++) = 1

2

∫
d2u(δV ++V −−(V ++)), (45)

with the condition:

D++V −− − D−−V ++ + [V ++, V −−] = 0. (46)

Locally one could representA+-component as a pure gauge:

A+
α = U−1∂+

α (U). (47)

In this parameterization we have:

V ++ = 0, (48)

V −− = 0, (49)

∇−
α = [D−−,∇+

α ] = U−1[D−−, ∂+
α ]U, (50)

A−
α = −U−1∂+

α (V −−)U + U−1∂−
α (U), (51)

fαβ = U−1[∂+
α , ∂−

β − ∂+
β (V −−)]U = −U−1∂+

α ∂+
β (V −−)U. (52)

Making gauge transformation with the gauge parameterU−1, we get the following repre-
sentation:

A+
α = 0, (53)

V ++ = −D++(U)U−1, (54)

V −− = −D−−(U)U−1, (55)

A−
α = −∂+

α (V −−), (56)

fαβ = −∂+
α ∂+

β V −−. (57)

The identity(45) together with(12)gives us:

1

2
�2log Det(D++ + V ++)= ∂+α∂−

α ∂ββ̇∂ββ̇ log Det(D++ + V ++)

= 1

2

∫
∂+α∂−

α ∂ββ̇ tr V −−∂ββ̇(V
++).

Since∂ββ̇ = u+
β̇
∂−
β + u−

β̇
∂+
β and∂+β(V ++) = 0 we obtain

�2log Det(D++ + V ++) =
∫

∂−
α tr ∂+α∂+β(V −−)∂−

β (V ++).

Now we have:

∂−
β (V ++) = [D−−, ∂+

β ]V ++ = −∂+
β D−−(V ++).
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Using the flatness condition(46), one could replaceD−−(V ++) byD++(V −−):

D++(V −−) = D++(V −−) + [V ++, V −−].

Therefore we get:

∂−
β (V ++) = −∂+

β D
++(V −−) = −D++∂+

β (V −−).

Taking into account(57), one derives:

�2log Det(D++ + V ++) =
∫

∂−α tr f αβD++∂+
β (V −−).

Now from the Bianchi identity∇−
α (f

αβ) = ∂−
α (f αβ) + [A−

α , f
αβ ] = 0 one can obtain

�2log Det(D++ + V ++)

=
∫

tr f αβ∇−
α D

++∂+
β (V −−)

=
∫

tr f αβ [∇−
α ,D

++]∂+
β (V −−) + tr f αβD++∇−

α ∂
+
β (V −−)

=
∫

tr f αβfαβ − trD++(f αβ)fαβ + D++(tr f αβfαβ).

The second and the third terms are zero due to the relationsD++(f αβ) = 0 and∫
D++(tr f αβfαβ) = 0. Therefore we get the simple identity

�2log Det(D++ + V ++) =
∫

tr f αβfαβ. (58)

Taking into account the relation(F ∧F) = −1
2fαβf

αβ volM we complete the proof of the
theorem.

4. Explicit calculation for one-instanton connection

There is a well known explicit formula for the density of the topological charge of the
gauge field describing one-instanton solution of the self-duality equations:

2 trF ∧ F = −�2log

(
1 + x2

ρ2

)
volM. (59)

Here the instanton with the center atx = 0 has the sizeρ. This formula is obviously a
particular case of our general formula(43)with:

16π2T = log

(
1 + x2

ρ2

)
. (60)

In this section we show how our general expression forT reduces to (60). Consider the
expansion of the determinant:

log Det

(
1 + 1

D++V ++
)

=
∑
k=1

(−1)k
1

k

∫
d2uTr

(
1

D++V ++
)k

. (61)
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Taking into account the simple identity:

D++(x+
i x

−j ) = x+
i x

+j , (62)

let us analyze first terms of the expansion:

1

D++
x+
i x

+j

ρ2
+ 1

D++
x+
i x

+j

ρ2

1

D++
x+
i x

+j

ρ2
+ · · · (63)

= x+
i x

−j

ρ2
+ 1

D++
x+
i x

+lx−
l x

+j

ρ4
+ · · · (64)

= x+
i x

−j

ρ2
+ x+

i x
−j |x|2
ρ4

+ · · · . (65)

Here we have used the relations:

x+
j x

+j = 0, (66)

x+
j x

−j = |x|2. (67)

It is clear that different terms in the expansion are connected by simple relations. Taking
the integral overu variable we get for the full series:

16π2T =
∑

(−1)k
1

k

|x|2k
ρ2k

= log

(
1 + |x|2

ρ2

)
. (68)
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Appendix A. Determinants of Cauchy–Riemann operators over Riemann surface

In this section we recall basic facts about the determinants of∂̄A-operators (chiral deter-
minants) and prove the identities used in the main body of the paper.

LetM be a compact one-dimensional complex manifold andE be a smooth vector bundle
overM. Let ∇A be a holomorphic connection. We denote(1,0) and(0,1) components of
∇A as∂A and∂̄A respectively and identify the affine spaceA of ∂̄A-operators with the space
of holomorphic structures inE.

Let�A be a Laplace operator written as follows:�A = ∂̄∗
A∂̄A. Assume that̄∂A is invertible

and∂A is conjugated tō∂A with respect to a suitable hermitian metric.
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Theorem 2 (Quillen [7]). Let A0 be a base point. Then there exists an unique up to a
constant holomorphic function Det(A0, A) onA such that

Det�A = e−‖A−A0‖2|Det(A0, A)|2. (A.1)

Here Det�A = exp(−∂/∂s|s=0 Tr �−s
A ) is ζ -regularized determinant of�A and

‖B‖2 = i

2π

∫
M

tr BB̄.

Proof.

δĀlog Det�A = ∂

∂s |s=0
s Tr(�−s

A �−1
A δ�A) = Tr(�−s

A ∂̄−1
A δĀ)|s=0.

Taking the variation in the formδĀ = ∂̄A(ε) = [∂̄A, ε] one gets

Tr(�−s
A ∂̄−1

A δĀ)|s=0 = Str(�−s
A ∂̄−1

A δĀ)|s=0 = Str(�−s
A ε).

Simple calculation shows that the regular value of〈x|�−s
A |x〉 at s = 0 is equal to(1/2π i)

(FA + 1
2FτM )(x), whereτM is holomorphic tangent bundle. Thus we have

δĀ log Det�A = 1

2πi

∫
M

tr FAε + 1

2
FτM tr ε.

Hence

δAδĀ log Det�A = − 1

2π i

∫
M

tr ∂̄A(δA)ε = − i

2π

∫
M

tr δAδĀ.

Therefore there is a holomorphic function Det(A0, A) onA such that

Det�A = e−‖A−A0‖2|Det(A0, A)|2.
Denote∂ = ∂A0, ∂̄ = ∂̄A0. Making infinitesimal gauge transformations

δA = ∂A(ε) = ∂(ε) + [A, ε], (A.2)

δĀ = ∂̄A(ε) = ∂̄(ε) + [Ā, ε], (A.3)

in the formula(A.1) one gets

δε log Det�A = − i

2π

∫
tr δAĀ − i

2π

∫
tr AδĀ + δε log Det(∂ + A)

+δε log Det(∂̄ + Ā).

Since the determinant of�A is gauge invariant we have:

δε log Det(∂ + A) + δε log Det(∂̄ + Ā) = i

2π

∫
tr ∂A(ε)Ā + i

2π

∫
tr A∂̄A(ε).
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The simple identity tr[A, ε]Ā + tr A[Ā, ε] = 0 leads to

δε log Det(∂ + A) + δε log Det(∂̄ + Ā) = i

2π

∫
tr ∂(ε)Ā + i

2π

∫
tr A∂̄(ε).

Both left and right hand sides of the formula are decomposed into the sum of the holomorphic
and antiholomorphics parts. Considering the antiholomorphic part we obtain the variation
formula:

δε log Det(∂̄ + Ā) = i

2π

∫
tr ∂(ε)Ā. (A.4)

Now let us define the variation derivativeA(Ā) of log Det(∂̄ + Ā) as:

δĀ log Det(∂̄ + Ā) = i

2π

∫
d2z(δĀ ∧ A(Ā)). (A.5)

Expressing theequation (A.4)in terms ofA(Ā) andĀ we get the condition:

∂̄A − ∂Ā + [Ā, A] = 0. � (A.6)
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