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Abstract

In this paper we continue our study of the fourth-order transgression on hyperahler manifolds
introduced in the previous paper. We give a local construction for the fourth-order transgression
of the Chern character form of an arbitrary vector bundle supplied with a self-dual connection
on a four-dimensional hyperkahler manifold. The construction is based on the harmonic twistor
formalism. Remarkably, the resulted expression for the fourth-order transgression is given in terms
of the determinant of the-operator defined on fibers of the twistor fibration.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we continue our study of the transgression of characteristic classes of hy-
perholomorphic bundles on hyperkahler manifo]@ks In the previous paper the global
construction for the fourth-order transgression of the Chern character form on a compact
hyperkahler manifold was proposed. In addition, the explicit expression for the transgres-
sion of the Chern character arising in the application of the local families index theorem
was found. This construction was local over the base of the fibration. It is natural to look
for a local derivation of the transgression of the Chern character forms for an arbitrary
hyperholomorphic bundle. In this paper we give the general local construction for an ar-
bitrary hyperholomorphic bundle on a four-dimensional hyperkahler manifold. Note that
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in d = 4 the condition on a hermitian bundle to be hyperholomorphic is equivalent to the
antiself-duality condition on the corresponding connection. We propose an explicit expres-
sion for the fourth-order transgressi@ié) of the top degree part of the Chern character
form for an arbitrary vector bund@&supplied with a self-dual connection. The construction

is local and thus is applicable to an arbitrary four-dimensional hyperkahler manifold
Locally the Chern character form is exact and we have:

chiz () = voly AT

for a volume form vol;. Remarkably, the explicit expression fB(€) is non-trivial even
for a linear bundle.

In our derivation we essentially use the harmonic twistor approach, the variant of the
twistor formalism developed i[8,4,8]. In twistor approach9] one codes the information
about self-dual connections on a vector bundle in terms of holomorphic structures on a
bundle over the twistor fibratiodiy; — M with a fiber beings2. Remarkably, the proposed
expression fofT' (€) is given in terms of the determinant of tg-operator in the sense
of Quillen [7] acting on sections of the holomorphic bundle restricted to the fibers. This
implies that the results of this paper may be connected with the local families index for the
twistor fibration.

Rather straightforwardly, the construction described in this paper may be generalized
to hyperkéhler manifolds of an arbitrary dimension. We are going to discuss the general
construction connecting the approaches of this papef2jritie future publication.

2. Harmonic twistor formalism

In this section we give a short account of the harmonic formalism closely following the
presentation given if8,4]. Let M be a four-dimensional manifold. Holonomy group in four
dimensions is a tensor produgi(1l) ® Sp(1) and7*M naturally splits:

T*M = H; @ Hrg,

where?#; r are§(1)-bundles ove! with the connection forms»‘(j‘L RS such that
Vhe =hBa)‘zB, Ve* =e’3w‘1’35.

In this notation®%* = h% ® ¢* is the basis of 1-forms. '
Let Z be a total space @, \ 0. Let us introduce harmonic variable$?, ujf with the
following properties:

+_ e +& _ b
ug =utPe,p  w =il @)

u, = u_BEBd, u % = uﬂfeﬁ“’", (2)

wheree®f = —€4p = €ga
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They define a frame in the bundi¢, . We will consider the spherical bundle defined by
the condition:

u:;u'm =0, u:;u_d =1, 3)
supplied with the reality condition:

ud =yt 4)
Let M be a hyperkahler manifold. Then one could chose the trivial connectioH ;on

(a)dL 5= 0). Let us introduce the bases of vertical forf#$ and horizontal formg®* with
respect to projectio@ — M as follows:

Qid — duia’t nia — uio’zeda

The variables:*® parameterize complex structures BiM compatible with the hyper-
kahler structure. At each point, u) € Z the formsy ™ (=) span the distribution of the
holomorphic (antiholomorphic) forms with respect to the complex structune7,* M.

We will be interested in the local properties of the self-dual connections on vector bundles.
Thus we could consider the flat spate = R* with the standard metrig,, = 8,v in
coordinates*. As the sections dijp(k) x S(1)-bundle, the coordinateg* may be written
asx®® with the reality condition®® = x4, where

Xai = €apespx’P = epuesxPP, (5)

x4 = €aB€spXpp = €Ba€iogXpp- (6)
For the complex structure defined byhe antiholomorphic coordinates are:

xt = u(jfx‘m, @)

x&t = utx4q. (8)

Now the reality condition can be written as follows: = x¥<. In fact
T te——_  Fod _ L Fa
X =UT%Xgq =ujx =xT.

Using(1), (2), (5) and (6)one gets

xtY = xgeﬂ“, xf = x+ﬂelga, 9)
x %= xlge"‘ﬂ, x, =x Peb, (20)

For the differential operatos: = uth d, 4 we have the following simple relation:

a
+ _
O = dxFe

(11)

Taking into account the normalization conditiq33, we get the expression for the Laplace
operator:

A = 9"y, =20FaTe, (12)
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In the following we will use the realization af(2) algebra:

[D**; D] =D", (13)
[D°; D**] = +2D**, (14)
by the first order differential operators:
.0
DT =yt -, (15)
ou—%
__ g 0
D =u am, (16)
9 9
0_ -+ -
D" =u a8u+"" u aau—""’ a7
with the properties:
Dt Tute =0, (18)
DYty = yte, (29)

One could introduce the formal analog of integration of the functions of the harmonic
variables as follows. Lef @ (1) be a function of the charge (D°(f@)) = gf@). Then it
has the following expansion:

@ (- yE) = (@1 sGinrg Lo Bn) ST -
FD%0u )_Zfal GntqP1 Ugs oo s Uy g e sty . (20)
The integration may be defined by the conditions:
/ d2ul =1, (21)
2 —
/d uuzl,m,inujl,.u,j,,,) =0, n+m>0. (22)

Note that the integral of the function with non-zero-charge is zero. Integration rules defined
by (21) have the usual property to be zero for a total derivative:

/ d’ud*tf =o0. (23)

Thus defined integration is equivalent to the usual integration over the sphareerms
of coordinatesi ¢ but has a virtue to be defined algebraically.

Consider a hermitian vector bundfeon M with a connectiorv. For the holomorphic
structure defined by the holomorphic and antihiolomorphic parts of the connection are
given by:

VE = utv,,, AL = uEY Ay (24)
The curvature of the connectidnhas the representation:
Foapp = €apfap + S2ap fap

wheree, 2 are antisymmetricf is symmetric.
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Let the connectiorV on & be self-dual. Thus the self-dual part of the curvatyjfg is
zero and we have:

Foapp = €apSap- (25)

From the condition$3) it follows that the connection is integrable on the holomorphic and
antiholomorphic hyperplanes:

[V, V51=0, (26)
[V, Vil = fop. (27)

The operatoryj which lead to self-dual connection may be characterized by the following
set of equations:

[Va:V51=0. (28)
[D*:vi]=0, (29)
(DO VE] = +VE (30)

The main advantage of the representa{$)—(30)is the possibility to use the-dependent
gauge transformations for finding explicit solutions of the self-duality conditions. This goes
as follows. Locally the firséquation (28allows to represent the positive part of the harmonic
connection as the pure gauge with zero-charge gauge paralheter

vi=v"tu, (31)
gV =1= qU(x,u)) =0. (32)

After the gauge transformation with parameltéx, ) 1 we get the set of covariant deriva-
tives:

vi=a], (33)
ptt = ptt + ytt = pt+ + UD++U_1, (34)
D0 = po. (35)

Now the only constraint on the functidin** with ¢ = 2 comes fron{(29).

0
Jdx—¢

vttt =o. (36)
The solution of this equation obviously is given by an arbitrary functio’ 6f, x*¢ with
the total chargeg = 2. Taking into account the properties of the integgil) we could

reconstruct the gauge field from the solution of Hug (36)

Aga = f d?uuy (Ut ). (37)
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As an example consider the following matrix-valued function corresponding to the gauge
groupSp(1) [5,6]:
)t

. xTx;
(vVthH! = p—zl- (38)
This leads to:
2 —1/2 +]’ —_
. . x .X'
W)l = <1+ x—2> [ — (39)
P P
. 1 1 . .
A(j){di = m <§Xad8i] + G[OIXé> . (40)

Thus we get the one-instanton solutidh with the center at = 0 and the size.

3. Forth order transgression of the second Chern class

According to the general consideration$2iit is natural to expect that locally the Chern
character form of a hyperholomorphic bundlever a hyperkéhler manifolt admits the
forth order transgression:

ch(&) = dd;d;dk (z(£)), (41)

whered; = 1dI~1, d; = JdJ 1, dx = KdK~1 are exterior derivative operators twisted by
the compatible complex structurgs/, K . For four-dimensional hyperkahler manifold this
relation simplifies:

chiz () = Voly AT (E). (42)

Herechpy is a degree four component of the Chern charactej, votthe volume form on
M andA is the Laplace operator.

In this paper we prove the relatigd2) using the harmonic twistor formalism and give
the representation fdr in terms of the determinant of the first order differential operator:

Theorem 1. Let &beahermitianvector bundleon ahyperkahl er four-dimensional manifold
M with a self-dual connection V and the curvature form F = V2. The following local
expression for the top degree part of the Chern character form holds:

chpy (&) = _glzTr(F A F) = voly AT (E), (43)

1 <Det(D++ + V++)> (a4)

T = 1629 —Dpeap

The determinant here is essentially the determinant of the opérgtorholomorphic
parameterization we have™* ~ 9;).
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In our parameterization the formulés.5) and (A.6)from theAppendix Atake the form:

slogDet(DT + vH) = % / duvrtv—— (v, (45)
with the condition:

Dty —p vttt [vtt v =0 (46)
Locally one could represent™-component as a pure gauge:

A =Utotw). (47)
In this parameterization we have:

vt =0, (48)

V™ =0, (49)

Ve =D Vi1 =UD 91U, (50)

Ay = -U (v Hu+Uuta, ), (51)

fap =UTM0F, 05 — 05 (V" OIU = =Uo 0 (V™ )U. (52)

Making gauge transformation with the gauge paramétet, we get the following repre-
sentation:

Al =0, (53)
vt = _pTtwut, (54)
VT =-D(U)U}, (55)
A, = -3V, (56)
fop = =04 95V (57)

The identity(45) together with(12) gives us:
%Azlog Det D™t 4+ vt = a*“a;aﬂﬁ'aﬂﬂ-log Det DT+ 4+ v+
_ % / 8+, 0P tr v "o,V ).
Sinced,; = u;aﬁ— + u;a; anddt?(V++) = 0 we obtain
A2logDet(D™ + V) = / a, tr a+“a+ﬁ(v——)a;(v++).

Now we have:

(VI =D, 951V =—a, D" (V).
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Using the flatness conditiq@6), one could replac®——(V*+) by DT (V).
DYV =DtV +[VvTT VTl

Therefore we get:
9 (VI =9, D" (v ) =-D o (v ).

Taking into accoun(57), one derives:
A2logDet(D™ + V) = / I~ tr DTS (V).
Now from the Bianchi identity (%) = 3, (f*f) +[A;, f*/] = 0 one can obtain
A?logDet(DT + V)
= /tr VDT f (V)
= ftr SV, DS (V) +tr fPDEV 0 S (V)
= / tr £ fup — tr DYE(FP) fup + D0 1P fup).

The second and the third terms are zero due to the relatdns(f*#) = 0 and
[ D*(tr £ f,5) = 0. Therefore we get the simple identity

A2logDet(DT + V) = /tr T fup. (58)
Taking into account the relatiaiF A F) = —%faﬁ £ voly; we complete the proof of the
theorem.

4. Explicit calculation for one-instanton connection

There is a well known explicit formula for the density of the topological charge of the
gauge field describing one-instanton solution of the self-duality equations:

2
2trF A F = —A%log (1+ %) voly. (59)

Here the instanton with the centerxat= 0 has the sizep. This formula is obviously a
particular case of our general formyk3) with:

2 x?
167°T = log| 1+ — - (60)
ol

In this section we show how our general expressionTfaeduces to (60). Consider the
expansion of the determinant:

1 1 1 k
log Det<l+ FV++> = Z(—l)k% / du Tr <FVH) . (61)
k=1
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Taking into account the simple identity:
D++(xl.+x—j) = xfxﬂ, (62)

let us analyze first terms of the expansion:

1 xtxts 1 xxt/ 1 xftxtd
++ l 7 T ++ : 2 ++ : 2 (63)
D 0 D pc D P
+,—j oty
X' x 1 x"x"'x; x
— i > + i l (64)
0 D++ o
xl.+x_j xi‘s'x_j|x|2
— - + o R (65)
Here we have used the relations:
xfxti =0, (66)
x;-rx_j = |x|2. (67)

It is clear that different terms in the expansion are connected by simple relations. Taking
the integral over variable we get for the full series:

1 2k 2
16727 — Z(_l)kz% = log <1+ |;—|2> . (68)
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Appendix A. Determinants of Cauchy—Riemann operatorsover Riemann surface

In this section we recall basic facts about the determinanig-afperators (chiral deter-
minants) and prove the identities used in the main body of the paper.

Let M be a compact one-dimensional complex manifold B a smooth vector bundle
over M. Let V4 be a holomorphic connection. We den¢ie0) and(0, 1) components of
V4 asd, andd, respectively and identify the affine spadef 3,-operators with the space
of holomorphic structures i&.

Let A4 be aLaplace operator written as followss; = 9% d4. Assume thad, is invertible
andd, is conjugated td, with respect to a suitable hermitian metric.
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Theorem 2 (Quillen [7]). Let Ag be a base point. Then there exists an unique up to a
constant holomorphic function Det(Ag, A) on A such that

DetA 4 = e~ 1A=401|Det(Ag, A)[2. (A1)

Here DetA 4 = exp(—3/ds;,—0 Tr A*) is ¢-regularized determinant af 4 and

i _
I1B|I? = 2—/ tr BB.
T JM

Proof.

0 e =1 -
8 slog DetA 4 = P Tr( AP ALNAL) = Tr(AT 9,18 A) 5o

Is=
Taking the variation in the forA = 94 (¢) = [0, €] one gets
Tr(A, 8,18 A) im0 = St(A "3, 18 A) =0 = St(A6).

Simple calculation shows that the regular valugxA*|x) ats = 0 is equal to(1/27i)
(Fa + %F,M)(x), wherery, is holomorphic tangent bundle. Thus we have

1 1
§;logDetA 4 = P /Mtr Fpe + EFIM tre.
Hence
1 - i _
5485 logDetA 4 = ——_/ trds(8A)e = ——/ tr§ASA.
27mi M 2r M
Therefore there is a holomorphic function D&g, A) on A such that
DetA, = e~ 14=401%|Det(Aq, A)2.
Denoted = d,,, d = d4,. Making infinitesimal gauge transformations
SA =04() =0(e) +[A, €], (A.2)
SA =04(e) =d(e) +[A, €], (A.3)
in the formula(A.1) one gets
[ - i -
S.logDetA 4 = —— /trSAA — —/tr ASA + 5. logDet(d + A)
2T 2
+8. log Det(d + A).

Since the determinant &f 4 is gauge invariant we have:

8¢ logDet(d + A) + 8. logDet(d + A) = 2'— / troq(e)A + 2'— / tr Ad, (€).
T T
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The simple identity trfi, €] A + tr A[A, €] = O leads to
5. 1og Det(d + A) + 5. log Det(d + A) = 2'— f tra(e)A + 2L / tr Ad(e).
T T

Both leftand right hand sides of the formula are decomposed into the sum of the holomorphic
and antiholomorphics parts. Considering the antiholomorphic part we obtain the variation
formula:

SclogDet(d + A) = 2|_ f trd(e)A. (A.4)
JT
Now let us define the variation derivativig A) of log Det(d + A) as:
$;logDet(d + A) = 2'— / d’z(3A A A(A)). (A.5)
JT

Expressing thequation (A.4)n terms ofA(A) andA we get the condition:
A —dA +[A, A] =0. O (A.6)

References

[1] A.A. Belavin, A.M. Polyakov, A.S. Schwarz, Yu.S. Tyupkin, Phys. Lett. B 59 (1975) 85.

[2] A. Gerasimov, A. Kotov, Transgression on Hyperkahler Manifolds and Generalized Higher Torsion Forms,
math.DG/0012248.

[3] A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, E. Sokatchev, Class. Quantum Grav. 1 (1984) 469.

[4] A. Galperin, E. Ivanoy, S. Kalitzin, V. Ogievetsky, E. Sokatchev, Class. Quantum Grav. 2 (1984) 155.

[5] A. Galperin, E. Ivanov, V. Ogievetsky, E. Sokatchev, in: Quantum Field Theory and Quantum Statistics, Vol.
2, Adam Hilger, Bristol, 1987, p. 233; JINR Preprint E2-85-363 (1985).

[6] S. Kalitzin, E. Sokatchev, Class. Quantum Grav. 4 (1987) 173.

[7] D. Quillen, Determinants of Cauchy—Riemann operators over a Riemann surface, Funct. Anal. Appl. 19 (1985)
31-34.

[8] A. Rosly, in: Proceedings of the International Seminar on Group Theoretical Methods in Physics, Zvenigorod,
Vol. 1, Moscow, Nauka, 1982, p. 263.

[9] R.S. Ward, R.O. Wells, Twistor Geometry and Field Theory, Cambridge University Press, Cambridge, 1990.



	Harmonic twistor formalism and transgression on hyperkahler manifolds
	Introduction
	Harmonic twistor formalism
	Forth order transgression of the second Chern class
	Explicit calculation for one-instanton connection
	Acknowledgements
	Determinants of Cauchy-Riemann operators over Riemann surface
	References


